If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+10t+2.5=0
a = -5; b = 10; c = +2.5;
Δ = b2-4ac
Δ = 102-4·(-5)·2.5
Δ = 150
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{150}=\sqrt{25*6}=\sqrt{25}*\sqrt{6}=5\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-5\sqrt{6}}{2*-5}=\frac{-10-5\sqrt{6}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+5\sqrt{6}}{2*-5}=\frac{-10+5\sqrt{6}}{-10} $
| 20d-5d+3d-8d-2d+2d=18 | | 20d-5d+3d-8d-2d=2d=18 | | b12+5=7 | | 19h-h-10h-5=19 | | 28x=23 | | 6c-5c=13 | | 6c−5c=13 | | 7c+2c-3c+3c=18 | | 7c+2c−3c+3c=18 | | X+1.1x=100 | | g=3(12+8) | | 35x/2+2835x=0 | | 20u−12u=8 | | 32x^2/3=16 | | 2(32/7)+6+2y+7=180 | | 8×y=24 | | 35x^2+2835=0. | | 5=|+4b | | 35x^2+2835x=0. | | 5x+20≤50= | | 5x+20≤50= | | 4g-8(2g+2)=-4g+8 | | 4g-8(2g+2)=-4g+8 | | 4g-8(2g+2)=-4g+8 | | 3(2x4)=3x+24 | | (x-2)(x^2-4x+4)=27 | | 2x-8/2=-2 | | 15y=59 | | (3+x)/(4)=(2)/(7) | | x-8/3=9 | | -13-5n=n-6-5n | | -100=-2(8-6x) |